
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Viktor Bobůrka

Supervisor: Ing. Ladislav Čmolík, Ph.D.
January 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474674Osobní číslo:ViktorJméno:BobůrkaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

3D tahová strategická hra

Název bakalářské práce anglicky:

3D turn-based strategy game

Pokyny pro vypracování:
Seznamte se s principy tvorby počítačových her. Proveďte analýzu herních principů používaných ve strategických
počítačových hrách, zejména ve hrách tahových. Na základě analýzy navrhněte 3D tahovou strategickou počítačovou
hru. Dále vytvořte modulární komponenty, ze kterých se budou skládat jednotlivé úrovně, jejich materiály a textury. Dle
návrhu vytvořte s využitím modulárních komponent alespoň pět hratelných úrovní hry. Výslednou hru otestujte pomocí
kvalitativních testů alespoň s šesti hráči.

Seznam doporučené literatury:
1) R. Koster. Theory of Fun for Game Design, 2nd edition, O'Reilly Media, 2013.
2) J. Schell. The Art of Game Design: A book of lenses. CRC Press, 2008.
3) B. L. Mitchell. Game Design Essentials, John Wiley & Sons, 2012.
4) S. Rogers. Level up! the Guide to Great Video Game Design, John Wiley & Sons, 2014.
5) E. De Nucci and A. Kramarzewski. Practical Game Design: Learn the art of game design through applicable skills and
cutting-edge insights, Packt Publishing, 2018.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Ladislav Čmolík, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: _____________Datum zadání bakalářské práce: 02.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Ladislav Čmolík, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
First and foremost, I would like to thank
Ing. Ladislav Čmolík, Ph.D., who super-
vised this thesis and provided numerous
consultations and much advice, for the op-
portunity to work on this thesis. I would
also like to thank everyone who helped
me test the early prototypes for their feed-
back, and the testers for taking their time
to play this game.

Declaration
I declare that this is all my own work and
that I have cited all the sources I have
used in the bibliography.

Prague, May 19, 2022

Prohlašuji, že jsem zadanou práci
vypracoval samostatně a že jsem uvedl
všechnu použitou literaturu.

V Praze, 19. května 2022

Podpis:.................................

iii

Abstract
This thesis focuses on developing a turn-
based strategy computer game. This pro-
cess consists of game design, the imple-
mentation of game logic and the creation
of modular components.

Keywords: Game development; Unity
engine

Supervisor: Ing. Ladislav Čmolík,
Ph.D.

Abstrakt
Tato práce se zabývá vývojem tahové
strategické počítačové hry. Skládá se pře-
devším z herního návrhu, implementace
herní logiky a tvorby modulárních kom-
ponent.

Klíčová slova: Vývoj počítačových her;
Unity engine

Překlad názvu: 3D tahová strategická
hra

iv

Contents
1 Introduction 1
2 Analysis 3
2.1 What makes a game fun? 3
2.2 Fun from mastery 3
2.3 Other sources of fun 4
2.4 Fun in tactical games 5
2.5 Game mechanics 6

2.5.1 Grid . 6
2.5.2 Cover systems 7
2.5.3 Feedback loops 8
2.5.4 Randomness 8

2.6 Analysis of existing tactical games 9
2.6.1 Pawnbarian 10
2.6.2 The Banner Saga 10
2.6.3 Into the Breach 10
2.6.4 Summary 11

3 Design 13
3.1 Paper prototype 13
3.2 Unit actions 13

3.2.1 Movement and distances 13
3.2.2 Attacks and cover 14

3.3 Game loops and incentives 15
4 Technical analysis 17
4.1 Existing software 17

4.1.1 Game engines 17
4.1.2 Modelling software and graphics

editors . 18
4.1.3 Audio software 18

4.2 Scripting . 19
4.2.1 Grid generation 19
4.2.2 Pathfinding 19
4.2.3 AI . 20

4.3 3D modelling techniques 20
4.3.1 Sculpting 21
4.3.2 Vertex editing 21
4.3.3 Modular components 21
4.3.4 Animations 21
4.3.5 Textures 22
4.3.6 Materials 22

5 Implementation 25
5.1 Game Systems and Scripts 25

5.1.1 Tile System 25
5.1.2 Turn management and turn

order . 26
5.1.3 AI . 26

5.2 Modular Components 28
5.2.1 3D modelling 28

5.3 Testing . 31
5.3.1 Questionnaires 31
5.3.2 Results 32

6 Conclusion 35
A Bibliography 37

v

Figures
1.1 Medieval chess pieces.[oS22] 1

2.1 A: Visual style of the game
Manifold Garden [Chy], B: Enticing
discovery in Zelda: BotW [IGD22] . 4

2.2 The layout of PawnBarian:
red-marked tiles will be under attack,
and the player can move like a knight
in chess would.[j4n21] 9

2.3 Hand-drawn art assets in The
Banner Saga[Stu21] 10

2.4 The player is on the move and can
see where enemies will emerge and
attack on their turn.[Gam21] 11

3.1 The used paper prototype made
partly from existing board games
(Puerto Rico and Prophecy). 14

3.2 This figure shows a unit (blue)
behind cover (black), and all the tiles
it takes reduced damage from. 15

4.1 Unity game engine. 18
4.2 A 3D model in blender. 18
4.3 Waveform audio software. 19
4.4 An example of modular

components usage.[Bur21] 22
4.5 An example of UV unwrapping and

a color texture.[Tuy21] 23
4.6 An example of a material created

with four textures. From the left to
the right they are albedo, normal
map, roughness and metallic.
[Tuy21] . 23

5.1 An enemy unit attacking the
player’s unit 27

5.2 An early version of a level
consisting of modular components 29

5.3 A 3D model of a unit and its
texture . 29

5.4 A shader that rotates the texture
independently of the object 30

5.5 Tiles the player can move to
highlighted in blue and enemies they
can attack highlighted in red 30

5.6 The finished game with all models
and shaders used 31

5.7 Results from Likert scale
questionnaire 32

vi

Chapter 1
Introduction

Computer games are a significant part of the entertainment industry, and by
comparison of their global revenue, they might even become more influential
than the film industry. They have been growing in popularity for the past 40
years, and according to DFC [Int21], there are currently an estimated three
billion players worldwide. Whether computer games are an emerging art form
or a new type of entertainment, they are massively popular with the general
public. Therefore, it is worth studying how they are produced and learning
to create them.
This thesis focuses on the process of creating a computer game. Due to its
scope, it will cover a subset of computer games called tactical games. They
are a very compelling genre of games and have a long and rich history. They
have been invented as board games in ancient civilizations and continue to
be popular today. Some have been played for several thousands of years.
Others are, despite their long existence, still being reinvented and massively
popular. Because of their variability and longevity, they make good material
for further study.

Figure 1.1: Medieval chess pieces.[oS22]

The world tactical comes from the Greek word taktike (the art of ar-
rangement), which reflects the historical function of the games. Some have
even been used to educate military leaders and hone their abilities on the

1

1. Introduction
battlefield, for example, the Prussian game Kriegsspiel. Other ones are still
being played today and are getting mainstream attention, such as chess or go.
What makes tactical games interesting is that they still act as battles, only
they don’t happen physically but intellectually. For example, Pirie [Mad19]
claims chess has been viewed as a tool to demonstrate intellectual superiority
over the Western world by the Soviet Union.
When considering the digital space, battles are still the primary motivation
of tactical games. There, they don’t have to happen between two humans
but can be a challenge given to one player. Creating such a challenge is going
to be the topic of this thesis.
In order to create a tactical game, existing games must be first analyzed.
The second chapter of this thesis will focus precisely on that. I will explore
what tactical games are, how they can be classified, and what makes them
fun to play. Then I will look at examples of individual games and what I can
learn from them. The third chapter will focus on designing a tactical game
using the insight gained from the analysis. The design will partly stem from
existing game principles and partly try to implement new mechanics.
In chapter four, the design will be analyzed from the technical perspective,
and different approaches that will be suitable for the design will be examined.
The algorithms needed in order to realize the game mechanics as well will
be analyzed as the basics for a turn based game. Then, the creation of 3D
assets will also be described and different approaches will be discussed.
In the fifth chapter, the implementation of the game will be covered. The
creation of modular components that will be used in the game will also be
documented. Finally, the fifth chapter will also contain testing of the game
and its evaluation.

2

Chapter 2
Analysis

In this chapter, I will look into guidelines for creating a fun computer game.
I will start with some general principles that can be used when making any
game, and then I will analyze successful tactical games to see what they can
teach us. Later, I will use these principles to fuel design decisions.

2.1 What makes a game fun?

Before analyzing games, one crucial question needs answering – what makes
a game fun? Considering there isn’t even a single definition of what a game
is, it would be a difficult task to thoroughly define what it is about a game
that makes it fun. While entire books are written on this topic, there is no
consensus as it is a highly subjective matter. However, some attempts to
answer it can give us insight into the mindset that can be helpful when trying
to create a game.

2.2 Fun from mastery

Let’s start with a general idea of what makes a game fun. According to
Raph Koster [Kos05], “fun from games arises out of mastery. It arises out
of comprehension. It is the act of solving puzzles that makes games fun.
In other words, learning is the drug.” Most things you do in games can be
derived from a desire to learn. This desire can be applied to learning about
the story or the world of the game. However, it is of most importance when
mastering the underlying game mechanics.
The point at which a game ends is usually when the player runs out of things
to learn. Once they can predict what happens at every point in the game, it
becomes predictable and boring. Game designers know this, of course, and
they know helpful tools to prolong the lifetime of a game.
There are several ways to let the player learn for as long as possible. One
possibility is to use levels. Most games have different levels that the player has
to go through because the presented challenge can change significantly with
variations in the player’s surroundings. Sometimes, they randomly generate
content, hoping that ever-changing playing fields will keep the player engaged

3

2. Analysis
indefinitely.
Some games unveil their mechanics one at a time so the player can keep
learning for a longer time. It is a quite common strategy across game genres.
For example, in platformers, the player can discover new possibilities of
movement and can be presented with new challenges. In role-playing games,
the player can unlock new abilities to interact with the world in a novel way.
In tactical games, new units can be introduced, and the player has to learn
how to play with or against them.
Perhaps the oldest and most effective example is multiplayer games. There
are as many different challenges in multiplayer as there are players. Then, if
a game has a vast possibility space, people can keep playing it for centuries.
The most known examples of this are chess or go. They both feature a
so-called combinatorial explosion of possibilities. It is the effect of having, for
example, twenty possible first moves in chess, but after four moves, there are
197 742 possible layouts. Having this many possibilities makes the game too
complicated to be solved. Therefore, you can spend your whole life learning it.

Figure 2.1: A: Visual style of the game Manifold Garden [Chy], B: Enticing
discovery in Zelda: BotW [IGD22]

2.3 Other sources of fun

While most games are primarily focused on mastery of the game mechanics,
there are also ways to classify fun into different aspects. Those can help us
clarify which events the game can focus on to deliver a coherent experience
to the player. According to Robert Hunicke [RH], there are eight sources of
fun in gameplay:..1. Sensation is the pleasure of the senses. Traditionally, the source can be

a striking visual style or a satisfying sound effect. Notable examples are
Manifold Garden, Mirror’s Edge, and Mario Odyssey...2. Fantasy can let you escape into the game’s make-believe world if it’s
captivating and more pleasing than the real world. Famous examples
are Assasin’s Creed and Final Fantasy.

4

................................. 2.4. Fun in tactical games..3. Narrative can be understood as the story told by the game, but some
games utilize a so-called emergent narrative. This kind of narrative can
emerge naturally and directly from the game mechanics. Some games
even focus almost solely on the story, for example, Firewatch and What
Remains of Edith Finch. Good examples of emergent narratives are
Crusader Kings or the Far Cry series...4. We have already considered challenge as a source of fun in games. There
the pleasure comes from overcoming obstacles or mastering the game
mechanics. Almost all games utilize this source, but some games focus
on it more than others, such as Spelunky or Counter-Strike...5. Fellowship is a source that utilizes other players and social structures. It
is very commonly drawn from board games but has its place in many
multiplayer games, too. Co-op games like the board game Pandemic, or
It Takes Two utilize this. Many MMORPGs also work with this idea on
a much larger scale, such as World of Warcraft...6. When discussing discovery, what is usually meant is exploring the game’s
world. The pleasure comes from finding places of interest carefully placed
by the level designer and generally containing some rewards or easter
eggs. There are many examples, such as Zelda: Breath of the Wild,
Outer Wilds, and Subnautica...7. Expression is fun through self-discovery. It means the player can adjust
the game world to their own image. It is tough to achieve it in a game
with a narrative (unless it is very reactive like in Dungeons and Dragons),
but a familiar feeling in sandbox games like Minecraft...8. At last, submission is a complete immersion in a game. It happens when
the player doesn’t consider it a single experience but rather an ongoing
hobby. Some examples include collecting games like Warhammer: 40 000
or multiplayer pastime games like League of Legends.

2.4 Fun in tactical games

Tactical games are a highly analytic genre. The player spends most of the
time weighing different moves and calculating outcomes. This leads to some
sources of fun being more viable than others. While tactical games can utilize
multiple of those sources, I think the most important one is challenge. Tactical
games revolve around carefully looking at your options and developing the
best plan for a given situation. The pleasure, then, comes either from the
player seeing their plan succeed or from learning how to be more successful
in the future.
However, the player’s plan can be flawed or become outdated, and they have
to invent a new one. This dynamic creates an ebb and flow to the game, and
the player has to change their plan every couple of turns. The number of
turns the player can make before changing their strategy varies significantly

5

2. Analysis
from game to game. For example, in tic tac toe, you can develop an optimal
strategy and then don’t have to change it at all (which is why it is trivial),
but chess grandmasters can think twenty moves ahead [Mos19], and they
still might not make the best move. There is no optimal value for how far
ahead the player should plan as it changes with their goal, the difficulty of the
challenge, and their skill. The only thing we can rule out are the extremes –
if there are too few options, you can effortlessly solve the challenge in the first
turn, and the rest would be trivial and uninteresting. If there are too many
options and you can’t predict the outcome, the game is confusing instead of
fun [Kos05].
Other sources of fun can also appear in tactical games, such as sensation
from visuals and sounds, narrative that can be either written or emergent,
discovery of the world map, or immersion in the game.
Fun from sensation can come together when the visuals or sounds of the
game feel satisfying to the player. The visuals include visually pleasing 3D
models and animations, which can go a long way if the player has time to
admire them. Aside from that, many visual effects can be used to heighten
the enjoyment. However, games need strong art direction to utilize this source
of fun, and it is challenging, if not impossible, to judge or quantify.
Sound design is also an essential aspect of a game, even though it often
goes unnoticed. Most games feature a musical score, sometimes adapting
to in-game events. Then, of course, there are sound effects of anything that
happens on screen. Sounds, such as footsteps, gunfire, or background noise,
help immerse the player and set the atmosphere of a setting.
Another substantial component in tactical games can be narrative. Most
feature a linear or branching story, and others even manage to create an
emergent narrative through what happens in its gameplay.

2.5 Game mechanics

There are several game mechanics frequently used in tactical games that I
would like to analyze as I plan to use them when designing my game. Those
include grid and cover systems, feedback loops, randomness and balancing.

2.5.1 Grid

A grid system is a crucial aspect of tactical games. It limits the movement of
units to fit into a grid, which allows for clear and well defined boundaries in
which the player can act.
There are several types of grids used in turn based games. The most common
types are square grid and hexagonal grid. Both have some advantages and
disadvantages which we will discuss.
Hexagonal grids, such as one used in the game series Sid Meier’s Civilization,
have an obvious advantage of universality. That means that every tile is
connected to all neighbor tiles in the same way, meaning along one edge.
This means that the intended distance from each tile to all neighbor tiles is

6

................................... 2.5. Game mechanics

the same as the actual distance, and there is very little room for ambiguity.
Surprisingly, implementation of hexagonal grids is not complicated and is
very similar to implementation of square grids.
Square grids, on the other hand, might be a bit easier to understand for new
players, as they mimic grids of popular board games such as chess.
However, they also present a dilemma. The culprit is that squares connect to
four other squares via their edges, but to four more squares via their vertices.
This means that there are multiple possibilities of what a square’s neighbors
are and what are the distances to them. It is up to the designer, then, to
choose the proper use of a square grid and can give them more options in
their approach.
Only using the edges as connections between squares and setting the distance
between them to one gives us the Manhattan distance. However, this creates
a dissonance between the distance in the game and distances in real life. For
example, the distance between squares 1,1 and 2,2 would be two, but in real
life it would be around 1.4.
This problem can be fixed by including the diagonal neighbors as well and
setting the diagonal distance to 1.4, but then it might be challenging for
players to accurately estimate distances on the grid without having to do
decimal calculations.
This leads us to the conclusion that the type of grid should be selected based
on the situation. In some cases, it is more important that distances and tiles
feel more representative of the real world, in others, clarity and breadth of
designer choice is more desired.

2.5.2 Cover systems

A cover system comes out very naturally with a grid system. When a game
features a tile system, some tiles (or even borders between tiles) can be hidden
behind. When a unit hides behind such a cover tile, it can be protected from
enemy attacks. That usually means that they will receive less damage, or
that they are more difficult to hit. Of course, a single cover tile doesn’t have
to (and sometimes shouldn’t) protect a unit from all sides. As in real life, if
you hide behind a rock, people can still see you if they are behind the rock,
too.
The effect of a cover system is that it matters much more how a player places
their units. For each of their units, they have to balance its cover, ability
to attack enemies outside of cover, as well as targets they can reach with
their attacks, proximity to other units, and so on. This creates a broader
variety of choice for the player, which hopefully presents the player with more
interesting choices and dilemmas. They can, for example, run outside of cover
and risk receiving a lot of damage, in exchange for getting to a better spot or
hurting the enemy units more.

7

2. Analysis
2.5.3 Feedback loops

Feedback loops are invisible parts of games that can stem from other mechan-
ics, rather than being a mechanic on their own. They do, however, influence
the overall experience of the game greatly.
Feedback loops come in two forms – positive and negative. Positive feedback
loops cause that the more something happens, the more it will happen in the
future. Negative feedback loops mean that the more something happens, the
less it will happen in the future.
For example, positive feedback loops can occur in team based first person
shooters. If one team manages to kill a player from the enemy team, it gains
a number advantage which will make it more probable that it will kill more
enemies in the future.
Negative feedback loops can be found, for example, in most racing games.
There, it stops the player in the first spot from getting too ahead by slowing
them down or giving them worse rewards for certain actions. This makes it
harder for a player to stay in the first place and motivates players who are
behind to keep trying to catch up.
In other cases, feedback loops are left out. In tennis, there is no feedback
loop that would give either player an advantage or disadvantage after scoring
a point (at least if we disregard the psychological effect). That makes it more
fair in each game and gives the players time to change their strategies without
being pressured by artificial disadvantages.
The pitfall of feedback loops lies in their strength. If a positive feedback loop
is too strong, it might get out of control and give the starting advantage
much more impact than it should have. For example, if a hockey team scoring
a goal led to the other team losing one player, it would probably be overly
difficult to catch up. On the other hand, if a negative feedback loop is too
strong, any achievement can feel insubstantial.

2.5.4 Randomness

Randomness is commonplace in video games. It ranges from basic elements
like card drawing and hit chances, all the way to sophisticated systems like
procedural generations or simulations. It is a very broad topic that is present
in most games. Therefore, the goals of randomness can differ greatly.
In appearances like card drawing, the goal is to present the player with a
previously unknown situation that they have to react to. This new situation
leads to two things. Firstly, the player has to react to the cards they drew.
The reaction is that they reevaluate their position and future strategy. During
that, they engage with the game more and have to become adaptable.
Secondly, if a game is influenced by card drawing, there is almost an infi-
nite amount of different possible matches. In poker, for example, there are
2,598,960 possible five card combinations. With this many combinations, it
rarely happens that any two games are the same. This makes things easier for
the developer as they don’t have to come up with so many different situations

8

........................... 2.6. Analysis of existing tactical games

themselves to keep the player engaged.
An extreme case of this strategy is procedural generation. Games like No
Man’s Sky boast about providing 18 quintillion planets for the player to
explore. There are so many that most of them will probably never be visited
by any player. However, in more modest cases, the generated map can keep
players engaged for a reasonable amount of time and at the same time save
time for level designers who don’t have to place every object by hand.
However, there is another kind of randomness, so called output randomness.
It influences an action after it has been taken. A very simple example is when
the game tells you that your attack can deal four to six damage. But you
only learn how much you will actually deal after you attack. This type of
randomness makes it more difficult to plan ahead as you never fully know
what will become of your actions. With this in mind, there can be a risk and
reward scheme in play, which will allow the player to either play conservatively
or take a chance when they feel like it. Nevertheless, it has to be balanced
properly in order to not overrule any strategic thought.
The amount of randomness in a game influences the overall experience and
can override other elements if it is applied too much. Therefore, it has to
be carefully balanced. Schell describes it as follows: "Risk and randomness
are like spices. A game without any hint of them can be completely bland,
but put in too much and they overwhelm everything else. But get them just
right, and they bring out the flavor of everything else in your game." [Sch15]

2.6 Analysis of existing tactical games

It is often helpful to examine existing products before creating one’s own.
They can be used as bases for a further expansion of game mechanics or to
use the knowledge of the essential aspects of different games that make them
successful.

Figure 2.2: The layout of PawnBarian: red-marked tiles will be under attack,
and the player can move like a knight in chess would.[j4n21]

9

2. Analysis
2.6.1 Pawnbarian

This game is a perfect example of a small-scope tactical game. It doesn’t
have a story nor a lot of art and music and focuses primarily on the gameplay.
It is heavily inspired by chess, using both the chessboard and the mechanics
of unit movement. The player controls a single warrior and can act by using
the moves of different chess pieces. Your enemies are more varied, though, as
they employ different abilities and attack patterns. It is a game that features
some randomness in level generation and utilizes drawing cards for available
moves. The randomness helps create unforeseeable challenges and prevents
memorizing the level layouts and creating an optimal strategy, rather forcing
the player to consider every move individually.

Figure 2.3: Hand-drawn art assets in The Banner Saga[Stu21]

2.6.2 The Banner Saga

The narrative and art direction are the most prominent factors in The Banner
Saga. It taps a lot of potential from narrative and sensation as sources of fun.
There is an overarching story with cutscenes, a lot of written text fueled by
player decisions, and a series of battles in between. The story isn’t separate
from the gameplay because the player’s choices on the road can affect their
army’s battle morale and battle difficulty, cause their warriors’ death or
lead to recruiting new ones. Narrative, art, and music can invest the player
emotionally in the game. The incorporation of the player decisions and story
in battles helps enhance that.

2.6.3 Into the Breach

There is a clever twist in Into the Breach where the player can always see
what their enemy will do in the next turn. The goal, then, is to work around
that. The player’s units have abilities that allow them to manipulate the
position of enemies or cancel their attacks to render them ineffective. This
predictability removes intuition from the decision process and makes each
round feel like a puzzle game where the player needs to figure out the correct
sequence of moves to succeed.

10

........................... 2.6. Analysis of existing tactical games

Figure 2.4: The player is on the move and can see where enemies will emerge
and attack on their turn.[Gam21]

2.6.4 Summary

There are several takeaways from these three games. In Pawnbarian, we can
see that a game doesn’t need sophisticated art to be fun. It also shows us
how important randomization is for games that want the player to learn to
improvize.
The Banner Saga shows us how much great art can elevate a game. There
is no shortage of games where the visual aspect is the cornerstone of the
experience.
In into the breach, we can see how crucial positioning is in tactical games. It
makes the gameplay much more interesting if the player isn’t just calculating
attacks, but also employs spatial thinking.

11

12

Chapter 3
Design

This chapter describes the design decisions process. There are several topics
to be covered here, such as the grid system, cover system, feedback loops and
player incentives.

3.1 Paper prototype

In game design, it is rare that the designed product will function in the
intended way on the first attempt. This is why testing is a crucial aspect
of game development since the early stages. However, implementing ideas
in Unity might take a very long time and could turn out to be a waste of
resources. This is why, when suitable, paper prototypes are used to test out
initial game ideas.
In turn-based games, paper prototypes are even more suitable as they can
almost completely encompass the game mechanics. For these reasons, I
decided to create a paper prototype during the design phase and tested out
different mechanics to decide if they should be included in the game.

3.2 Unit actions

This section will describe which actions units can perform and how those
actions are performed.

3.2.1 Movement and distances

The game will be played on a grid. Some games employ hexagonal or square
grids and both have their advantages and disadvantages, as described in the
analysis chapter. For this game, I chose a square grid as it provides more
variety in movement and attack choices and makes it easier for the player to
estimate distances. It provides another dilemma, which is how to measure
distance.
For unit attacks, I decided to use Manhattan distance as it is very clear for
the player how far a unit can attack from any given tile. For movement,
however, it is quite unintuitive as it doesn’t correspond to human behavior.

13

3. Design..

Figure 3.1: The used paper prototype made partly from existing board games
(Puerto Rico and Prophecy).

Therefore, I decided that movement will have eight directions instead of four,
including diagonals. Moving along a diagonal, a unit will travel the distance
of 1.4. That is a closer approximation to what the distance would be in the
real world instead of it taking two cardinal movements.

3.2.2 Attacks and cover

Attacking a unit will be as simple as deducting the player’s damage from the
enemy’s health points. However, the game space will also contain objects
that provide cover for any adjacent unit. Cover will give the unit damage
reduction from its direction.
It would be possible for cover to reduce the hit chance of incoming attacks.
However, I want to avoid using probability to derive whether one character
will hit another. There are two reasons for this. Firstly, it can be simply
frustrating to see a shot miss when the player is counting on it. The other is
that the turn will usually end after this randomized action, and the player
can’t work around the unexpected event anymore. However, without any
randomness, games can be too trivial or repetitive. We can work around
this by including input randomness at the beginning of the turn rather than
output randomness at the end. One example could be that units will be given

14

...............................3.3. Game loops and incentives

Figure 3.2: This figure shows a unit (blue) behind cover (black), and all the
tiles it takes reduced damage from.

a semi-random number at the beginning of every round, affecting how many
actions they can take. Let’s call it morale.

3.3 Game loops and incentives

In strategy games, it is important to implement a feedback loop that influences
the state of the game. This loop should be a positive feedback loop to let the
player or the enemy gain and utilize advantages. That means that the more
one side wins, the easier it should be to succeed in the future.
Usually, this feedback loop emerges out of existing game mechanics. For
example, if the player manages to kill an enemy unit, they become more
powerful by having more units than the enemy. However, the turn order can
be set up so that it is a very minor disadvantage and if the unit wasn’t very
strong to begin with, it doesn’t affect the game very much.
To make this loop stronger for both sides, we can utilize the focus of a unit.
It can be influenced by other events in game, such as the player losing a unit
or managing to kill an enemy.
This approach has several advantages. One of them is that it will speed up
the late stage of the match because when someone gains the upper hand,
they will be able to win the rest of the game more quickly. The other one
is that it adds weight to even more minor decisions at the beginning of the
game, as they may influence the whole game. There is, however, a danger in
this approach. Positive feedback loops can quickly get out of control, so they
should either be weak or have a limiting element.
For example, instead of player units gaining or losing focus for every death of
any unit, it can be limited to some more important units in the game. This
makes the loop both weaker and presents the player with a choice. They can
decide if they want to aim on these high-value targets to strengthen their
own units. However, to make this choice more interesting, there also have to
be drawbacks to it.

15

3. Design..
To further expand on this mechanic, the high-value targets should be units
that are more difficult to reach or have more health than other ones. Other
enemies can, then, focus more on endangering the player’s units, drawing
their attention to themselves. Alternatively, they can target another unit
that is perhaps in a more vulnerable position or in a position that has more
potential to hurt the player.

16

Chapter 4
Technical analysis

In this chapter, we will attempt to find the most efficient and robust way to
create the game from a technical standpoint. This includes the use of game
engines and modelling software, but also more general ideas, such as modular
components or map generation.

4.1 Existing software

There are many technical aspects to creating a computer game. It is a multi-
disciplinary task and needs complex skills and software to realize. Thankfully,
many tools can simplify this process. The most significant one is the game
engine. Jason Gregory introduces game engines as “fully featured reusable
software development kits that can be licensed and used to build almost
any game imaginable.” [Gre14] However, this doesn’t mean game engines are
all you need. Another crucial tool is modelling software. It allows for the
creation of 3d assets, as well as animations. Those are then imported into
a game engine which can switch between them on command. Then there
are graphics editors, which are used to create textures used as properties of
materials for 3d models. Finally, digital audio workstations can record, edit,
and produce music and sound effects.

4.1.1 Game engines

Game engines usually handle a lot of fundamental computations, such as
collision detection, rendering, or physics. In addition to that, they let the
developer use code to add more functionalities. They also support the use
of 3d models, materials, and animations. There are many commercial game
engines used in the industry today, but in this thesis, we will use the Unity
game engine. It is currently one of the most widely used game engines. It
is very suitable for solo projects due to its simplicity and adaptability. It
also is one I have previous experience with and is free to use non-commercially.

17

4. Technical analysis...................................

Figure 4.1: Unity game engine.

4.1.2 Modelling software and graphics editors

3D modelling software is used to make 3D models and animations. Those can
be imported into Unity where they are controlled by scripts or conditioned
transitions. They can also be used as modular components, which will be
explained later. For 3D modelling, I will use the open-source program called
Blender.
Graphics editors allow for creating textures. Those textures are then used
to create a material that serves as a top layer of a 3D model. This layer
makes the viewer perceive it as a real substance. This thesis will not focus
on creating textures as there are many of them available under the Creative
Commons license.

Figure 4.2: A 3D model in blender.

4.1.3 Audio software

Digital audio workstations are programs that provide tools for creating and
editing audio. It can be produced either by recording or synthesizing different
sounds. Usually, it is a mixture of both. Creating audio is beyond the scope
of this thesis. Therefore, the game will use freely available music and sounds.

18

...................................... 4.2. Scripting

Figure 4.3: Waveform audio software.

4.2 Scripting

In Unity, scripts can be written in C# language and can affect anything in
the game. In this thesis, they will be used for grid generation, pathfinding, AI,
game logic, user interface and more. I will not go into detailed explanation of
those scripts, but will outline the most important algorithms.

4.2.1 Grid generation

The game world will consist of a grid, which will be generated from a text or
image file. The advantage of this approach is that it is very easy to modify a
level from this file. Instead of placing every tile separately in the Unity editor,
they can be rearranged from a text or image editor. The script will then
place them into the level as intended. With this technique, the 3D models of
some objects can also be randomized, which can lead to more variability.

4.2.2 Pathfinding

Pathfinding is a very common problem in video games. In strategy games, it
is an easier one because of the clearly defined grid. Usually, the algorithm has
to find a viable shortest path from point A to point B. There are several well
defined algorithms to find such a path. The most prominent one is Dijkstra’s
algorithm. It is a best-first search that explores all possible paths and returns
the shortest.
In some cases, exploring all possible paths can be computationally demanding
and redundant. This is why we will also use a greedy modification of Dijkstra’s
algorithm – the A* algorithm. It doesn’t have to search through every
possibility, because it uses a heuristic function. It can be understood as an
estimate of how close a certain position is to the desired goal. Positions that
are getting closer to the goal are then searched sooner then ones that are
farther from it. While this heuristic doesn’t have to yield the best result, it
leads to the shortest path most of the time and it does so very quickly.
A* has become the standard for pathfinding in video games and will be used

19

4. Technical analysis...................................
in this thesis for finding the shortest path. Dijkstra’s algorithm will also be
used for finding all possible movement options for a given unit.

4.2.3 AI

Artificial intelligence is fundamental for player experience, therefore it has
to be balanced carefully and is very difficult to execute well. In turn-based
games, there are many possible approaches as it has been a widely explored
topic that received mainstream attention. For example, the chess match
between Kasparov and Deep Blue is considered a cornerstone of AI research.
For turn-based games, there are numerous algorithms, such as the minimax
algorithm or Monte Carlo search, that work based on exploring the possibility
space as deep as possible. However, they are very complex in the sense
that the computations take a long time. According to Russel and Nordvig
[SR15], the time complexity of the minimax algorithm is O(bm), where b is
the number of legal moves and m is the depth of the search tree. In this case,
there might be a much more effective solution available.
Multi-criteria decision making is often used in small scale tactical games as it
doesn’t just find a good possible move, but can influence the way different
agents behave and make their behavior distinct and unique [Che13]. It is also
very computationally undemanding as it doesn’t search a whole possibility
tree, but only evaluates the current situation.
The core of the algorithm is an evaluating function, that assigns each possible
action a score based on several criteria. After all tiles are given a score based
on all criteria, the one with the best score is chosen and the action is executed.
Those criteria can be different for each use, which makes it very good at
distinguishing different behaviors. Weights of different criteria can also be
introduced, which makes for an easy introduction of greater variability.

4.3 3D modelling techniques

There are two main approaches to 3D modelling – polynomial modelling
and polygonal modelling. Polynomial modelling uses polynomial surfaces to
represent a 3D model. The creator of the model decides where the control
points of a polynomial surface lay, and the surfaces are approximated between
them. Polygonal modelling, on the other hand, consists of point that are
connected by triangles or other polygons.
The most important differences in the use of polynomial and polygonal
modelling are their precision, scalability and difficulty of use. Due to their
nature, polynomial models create smoother surfaces. They can also be scaled
to any size without losing any amount of detail. However, they are more
difficult to create and render. This is why polygonal modelling tends to be
favored in video games. This will also be the case in this thesis.
There are several techniques that are important to polygonal modelling, such
as sculpting, vertex editing and the use of modular components. They will
be discussed below.

20

............................... 4.3. 3D modelling techniques

4.3.1 Sculpting

Sculpting is perhaps the most powerful approach in polygonal modelling, but
it does come with some disadvantages. It lets the sculptor add or remove
material from a model as if they were sculpting from clay. It is very effective
for making detailed models of non-exact shapes very quickly. However, it is
very hard to precisely control, so it might not be suitable for modelling objects
that have strictly set proportions. Sculpted objects also tend to contain many
small polygons, making them more computationally demanding. Therefore,
sculpted objects are used mainly for baking of normal maps.

4.3.2 Vertex editing

Individual vertices, edges and faces can be edited to put a desired shape
together. In its most basic form, this could be a slow process of moving every
vertex individually to make them compose a 3D object. Fortunately, there
are many tools that quicken this process, most importantly extruding, loops
cuts, insetting, and many more.
While vertex editing can be more time demanding, it is more suitable for
objects with strictly defined boundaries, such as walls, tables, stairs, rocks
and other inanimate objects. It can also be stylized into a low-poly look
which embraces its imperfections and makes for a simplified view of the world.

4.3.3 Modular components

Modular components are in-game objects that can be re-used multiple times
within the game. This is a common approach in game development that
saves time and resources. The idea is to achieve a lot of variability while
not creating too many 3d models. For example, instead of making several
variations of different pipe layouts, the developer can produce parts that fit
into each other and then change their arrangements.
Another use of modular components can be seen when creating a game world.
A forest, for example, can only consist of a few different versions of trees that
are repeated. We can also use the same models with different size or color to
achieve a similar effect.

4.3.4 Animations

Animations are key to make a 3D model move or change shape in a scene.
However, to understand animations, we must first understand armatures and
rigging.
Armatures are equivalent to skeletons, which consist of bones. Bones are
added to parts of the model which should be able to move independently
from its other parts. For example, a typical 3D model of an arm has at least
eight bones. The upper arm, forearm, and hand have one, and each of the
fingers have one or more. With these bones, we can simulate the arm bending
in the shoulder, elbow, wrist and finger joints.

21

4. Technical analysis...................................

Figure 4.4: An example of modular components usage.[Bur21]

These bones can then be moved around and some parts of the 3D model will
follow them. For example, a bone in the upper arm of a modeled character
should cause the arm to move, but the rest of the body should stay still.
Rigging, then, is selecting which parts of a model correspond to which bones
of the armature.

4.3.5 Textures

Textures are used to map colors (or other attributes) onto a 3D object. First,
the vertices of the object are given UV coordinates. They connect a given ver-
tex to a given point on the texture. Then, the texture is applied accordingly.
Textures can serve multiple purposes. The most important one is color, but
there are several other uses. Normal maps, for example, can seemingly give
a texture depth where there is none in the 3D model. This is achieved by
manipulating the way light bounces off the texture.

4.3.6 Materials

Materials control the appearance of 3D models. They have many attributes
that allow them to be very versatile. More importantly, combinations of tex-
tures can be used in materials to create realistic visual appearance. Materials
can also use different shaders for their appearance.
In Unity, so called PBR (physical-based rendering) materials are used. They
are a type of material that uses four types of textures. They are albedo for

22

............................... 4.3. 3D modelling techniques

Figure 4.5: An example of UV unwrapping and a color texture.[Tuy21]

the material’s color, the metallic and roughness properties for how much
light the material reflects, and normal maps to manipulate light reflections
to create the illusion of depth.

Figure 4.6: An example of a material created with four textures. From the left
to the right they are albedo, normal map, roughness and metallic. [Tuy21]

23

24

Chapter 5
Implementation

In this chapter, the implementation of the game is described. There are two
major parts, scripting and modular components. Scripts are written in the
C# language and utilize the Unity framework, as well as some algorithms
that will be described below. Modular components were created in Blender
and imported into the Unity game engine. Scripts were created directly in
Unity.

5.1 Game Systems and Scripts

This section encompasses all the most important game systems and scripts,
such as the tile system, AI, pathfinding or map generation. The most
important is the turn manager script. Its role is to control the turn order and
call other scripts to ensure the correct execution of code. The script called
TileGrid contains the representation of the level. Each unit has their own
script, which keep track of its attributes and triggers animations or other
changes. The interactions between units, namely attacking, is done within
the combat manager script. Last but not least, there is an AI script that
calculates enemies’ behavior.

5.1.1 Tile System

The foundation of the game is the tile system. Before the game starts, a game
object for each of the tiles is created. A tile has three important properties,
its coordinates, a click handler, and a list of its neighbors. Coordinates
and neighbors let algorithms work with the tiles further, for example to use
pathfinding or calculate distance. The click handler registers when the user
clicks on a tile with the use of a box collider and passes that information to
the game manager.
There are several types of tiles – an empty tile, low cover, and high cover. An
empty tile is one that units can move to while the other two types provide
protection for a unit that hides behind them. This has to be taken into
account when moving on the map so that units don’t move to an occupied
tile. To keep this information organized, a grid manager object keeps track
of both actual game objects and their simplified representations.

25

5. Implementation....................................
There are two types of pathfinding used in this game. Breadth-first-search
serves to inform the player, and A* calculates the shortest path between two
points.
Using breadth-first-search, the game can highlight all available tiles for the
unit that is taking its turn. It keeps track of tiles that were encountered but
not explored. With each iteration, it removes a first element from this list
and finds its neighbors. If they were not explored yet, it adds them to the
list. Following these steps, it will be able to visit all available tiles. To stop
the algorithm from spreading over the whole grid, the search is cut off in a
certain depth depending on the searching unit’s movement points.
The A* algorithm is similar to breadth-first-search but uses heuristics and is
much faster in most situations. It also keeps a list of encountered nodes, but
unlike breadth-first-search, it keeps them sorted depending on two criteria
– the distance from the beginning and a heuristic function. The heuristic
function determines the distance from the goal. In this thesis, it was achieved
by using the euclidean distance.
Another important function of the tile system is calculating whether a unit
is in cover in relation to another unit that attempts to attack it. This is
done simply by checking neighboring tiles and if they consist of cover in the
direction of the attacking unit.

5.1.2 Turn management and turn order

The crucial update loop in the turn manager script has two main branches.
One runs if it is the player’s turn and the other if it’s an enemy’s turn. If the
player is playing, it works with the grid system to highlight possible moves
for a given situation. At the same time, it is waiting for player input from the
keyboard, which can result in the game moving forward. The other branch is
used for the enemies’ turns. It calls upon the AI to perform an action with
the active unit. When the AI has no moves left or it wants to finish its turn,
the turn manager moves to the next unit.
The order in which units take their turn can dramatically affect the outcome
of the game. The starting units have advantage over units that come after
them since they have an opportunity to attack the opponent first, possibly
removing them from the game before they can take their turn. To give neither
side a decisive advantage, the order is evenly distributed based each side’s
unit count. To preserve some variation, though, the individual units are
chosen randomly. To do this, first a ratio of friendly to enemy units is found.
Then, units are added according to this ratio so that the sequence is evenly
distributed.

5.1.3 AI

Out of the algorithms discussed in the technical analysis chapter, I decided
to use the multi-criteria decision making due to its fast computation and
variability.

26

...............................5.1. Game Systems and Scripts

The decisions were based on the following criteria:

Figure 5.1: An enemy unit attacking the player’s unit..1. Cover - it is as important for a unit to be in cover as it is for them to
deal damage to the player. This score evaluates how many of the player’s
units that are in range, would have their damage reduced by cover. It
also gives a higher score if the cover is more powerful...2. Player units in range - for a unit to be well positioned, they should be
able to fire at the player while not getting hurt back. This score was
at its peak when one player unit was in range and decreased as more
enemies could potentially hurt it. However, if there was no one in range,
it was set to 0 as it meant that the unit couldn’t perform an attack...3. Distance from nearest player unit is a complement of their units in range.
It would often happen that units which started the game far away from
any player units wouldn’t know which direction to go and would just
stay in one place until the player came to them. This failed to create
pressure on the player. Enemy units were given this score to try to get
in range of player units if they were too far to attack...4. Ally proximity - to stop enemies from clustering in a single position, a
negative score was given to a tile that was too close to the unit’s allies.
This allowed enemy units to spread themselves out and create more
difficult challenges for the player...5. Flanking score was based on how many player units weren’t in cover in
relation to a given tile. This meant that the unit could attack them with

27

5. Implementation....................................
their full damage potential, which is a considerable difference and an
important part of the game...6. Angle score is an expansion of the flanking score. It is often the case
that there are no possible tiles that would be flanking the player’s units.
Therefore, units try to get to a narrower angle to make flanking easier in
the future...7. Forbidden movement - for tutorial purposes, an extra score was added
that would make the AI stay in one place and not move at all. This
would cause the enemy unit to only use attacks and was done to not
overwhelm the player in the first level.

Each score was also given a modifiable weight that would make for easy
testing, iteration and balancing. For different kinds of units, some weights
could also be discarded. For example, meelee units would not take cover,
flanking and angle scores into account while increasing their score of trying
to get closer to the player by 50 percent.
This scoring was, however, made primarily for movement. To be able to
compare it to the choice of attacking instead of moving, the attack score was
set simply by seeing how much damage a unit could cause if they didn’t move,
but attacked a player unit. Then, the score was compared to the best score of
movement and the more highly evaluated action was chosen to be performed.
Such an AI is very functional, but far from perfect. However, it is easy to
modify and improve upon. One problem is that if a unit can take multiple
actions in one turn, it will still evaluate them separately. This can lead to
limited decision making. For example, if the unit has enough action points, it
could attack twice instead of movement. To make use of such opportunities,
attack score is doubled when such a possibility presented itself.
Nevertheless, this system could be improved by the unit exploring all sequences
of moves and picking the one with the best results.

5.2 Modular Components

As this game is meant to be played on a grid, the use of modular components
is very straightforward. Each tile on a grid will be represented by one or
several components, and the tiles will be combined to create the world map.
The tiles will either be empty and consist of a textured cube, or they will
contain another object (cover or unit), which will sit on top of the tile.

5.2.1 3D modelling

The 3D models were created with the many tools offered by Blender. The
most important ones include mesh editing, bones editing, UV unwrapping and
texture painting. As a creation of a single realistic 3D model could expand
to or even beyond the scope of a bachelor’s thesis, I decided to use stylized
low-polygon models. They are called low-polygon because they consist of

28

................................. 5.2. Modular Components

Figure 5.2: An early version of a level consisting of modular components

comparatively very few polygons, the unit model I created, for example, only
has about a thousand polygons. Some other objects can contains as few as a
hundred.
This approach requires the use of mesh editing rather than sculpting, as
sculpting requires the use of numerous polygons to be effective. The materials,

Figure 5.3: A 3D model of a unit and its texture

apart from the tile cube, were created with simplistic, single color textures.
However, even with simplistic models, there should be some variability. In this
thesis, it came in the form of game objects having several possible models that
are being assigned randomly at the time of their generation at the beginning
of the level. The same level can, then, be visually different every time it is
played, even though systematically it works the same.

29

5. Implementation....................................
To add more variety, the models were also rotated by a random amount. This
causes the whole space to not feel as uniform and artificial. In the grass tiles,
the texture was also independently rotated in the shader to create a more
natural look.
To emphasize the grid and make sure the player understands where they can

Figure 5.4: A shader that rotates the texture independently of the object

place units and how distances work, the grid needed to be distinguishable.
This was achieved by another shader that made the borders between tiles
black.
Two more shader were used to highlight tiles that the player can currently
move to and to highlight enemies they can currently attack.

Figure 5.5: Tiles the player can move to highlighted in blue and enemies they
can attack highlighted in red

30

....................................... 5.3. Testing

5.3 Testing

Testing is crucial for game development, as it can tell us if both the player
and the game behaves as intended. Usually, the developer is too invested and
familiar with the game so they can overlook some defects or not notice them
altogether. It is also important to know if players who have no understanding
of the game can correctly interpret what the developer is trying to commu-
nicate to them. For these reasons, the game was tested with seven people.

Figure 5.6: The finished game with all models and shaders used

They were free to figure the game by themselves from the visual feedback and
short hints at the beginning of each level. They would only receive advice
if it was clear they wouldn’t be able to progress by themselves. This only
happened once, but was to be expected from a person who had almost no
previous experience with video games.

5.3.1 Questionnaires

After finishing the game, players were asked to fill out a Likert scale question-
naire. A Likert scale questionnaire consists of questions with a psychometric
scale, which lets the tester answer on a scale from one to five between two
statements. Those two statements may differ for each question and are indi-
cated in the parentheses beside each question (1 - 5).
The questionnaire featured the following questions:..1. How familiar are you with strategy games? (not at all - very familiar)..2. How do you like strategy games? (not at all - very much)..3. How complicated did you find the game? (not at all - very complex)..4. How understandable were the controls? (very confusing - very intuitive)

31

5. Implementation......................................5. How often did you have to think about the next move? (almost never -
every time)..6. How fun was the game? (not at all - very fun)..7. How well did the game inform you about what was happening? (very
poorly - very well)..8. How would you rate the graphics? (very poorly - very well)..9. How would you rate the AI? (trivial - complex)

The results can be seen in figure 5.7.

Figure 5.7: Results from Likert scale questionnaire

The players were also asked the following open-ended questions to let them
express more thoroughly and focus on their own perceptions:..1. What did you enjoy most in the game?..2. What did you find most annoying in the game?..3. Did you encounter any bugs?

5.3.2 Results

First, let us focus on the Likert scale questionnaires. From the game design
perspective, the most important metrics are if the game was fun and if the
player had to think about their next move. In that aspect, I believe the game
was a success as most players found it enjoyable and the game had them
weighing their options before deciding what to do.
However, a lot of players believed the game mechanics were inadequately

32

....................................... 5.3. Testing

explained. It was an intentional decision to not let the player know every-
thing about the game, but more tutorials or visual indications would be an
improvement.
There were mixed reactions to AI and graphics. They seemed to satisfy most
players, but didn’t tend to score very highly. Low poly graphics tend to be
somewhat divisive, but could certainly be improved with larger variety of
models. The AI was challenging for the players, but as the units didn’t have
many possible actions to choose from, the AI had no opportunity to impress
players.
From the open-ended questions and from watching the testers while playing,
we can say that the most enjoyable part of the game was thinking about
positioning behind cover and flanking the enemies. A lot of players also liked
the minimalist models.
The questions about what the players found annoying and if they encountered
bugs were often interchangable. There was one major bug where the game
sometimes wouldn’t highlight the tiles the player could move to. This would
happen once or twice per game and led to some players being confused and
sometimes they would skip their turn because they thought they couldn’t do
anything else.
A more minor bug was that in level four, the players couldn’t move the camera
to all parts of the map. Fortunately, it only affected a small part of the map
and the game was still playable.
Some players also wouldn’t notice the differentiation between ranged and
meelee units at first, as the models weren’t large enough to notice the differ-
ence. This would be easily fixed by scaling up their distinctive features.
When the players were asked about what they most enjoyed, about half com-
mented positively on the graphics and the other half commented positively
on the gameplay. I think it is a good result where those two aspects are in
balance.

33

34

Chapter 6
Conclusion

This thesis aimed to create a turn-based 3D tactical game with the use of
modular components and test it on at least six players. First, I researched
principles of game development and analyzed existing games for inspiration.
Then, a paper prototype was created to test initial ideas and shape the form
of the game. Once the specifics of the game were more apparent, I weighed
different algorithms and approaches that could be used in development. The
layout of levels and the modular components needed were also identified.
The game was developed in Unity. First, the scripts were written with place-
holder 3D models. The most crucial scripts were turn order, map generation,
unit behavior, and enemy AI. All the scripts were written so the game could
be modified and balanced, creating editable variables for unit attributes and
enemy AI. The map could be generated from an easily editable text file.
After coding the base of the game’s logic, the modular components were
created. They were modeled and animated in Blender software using the
various tools of vertex editing. For some materials, custom shaders were
created. Most of those materials used textures made by me. Some exceptions
featured textures downloaded from the internet.
After the game was finished, qualitative tests took place with seven partici-
pants. Tests revealed some minor bugs, but the game was well received in
the most important aspects.
The development of this game deepened my knowledge of coding and modeling
tremendously. It also shows how complicated pieces of software games are
and how many different aspects and approaches can be used while creating
them.

35

36

Appendix A
Bibliography

[Bur21] Joel Burgess, http://blog.joelburgess.com/2013/04/
skyrims-modular-level-design-gdc-2013.html, dec 2021.

[Che13] Alex Cheng, https://www.gdcvault.com/play/1018058/
AI-Postmortems-Assassin-s-Creed, 2013.

[Chy] William Chyr, https://manifold.garden/presskit.

[Gam21] Subset Games, https://subsetgames.com/itb.html, dec 2021.

[Gre14] Jason Gregory, Game engine architecture, CRC Press, 2014.

[IGD22] IGDB, https://www.igdb.com/games/
the-legend-of-zelda-breath-of-the-wild/presskit, april
2022.

[Int21] DFC Intelligence, Global video game consumer
segmentation, https://www.dfcint.com/product/
video-game-consumer-segmentation-2/, 2021.

[j4n21] j4nw, https://j4nw.com/pawnbarian/presskit.html, nov 2021.

[Kos05] Raph Koster, A theory of fun for game design, Paraglyph Press,
Inc., 2005.

[Mad19] Pirie Madsen, The match of the century, https://www.adamsmith.
org/blog/the-match-of-the-century, 2019.

[Mos19] Wojciech Moskwa, Norweigan teenager to be crowned
new chess king, https://www.reuters.com/article/
us-chess-norway-carlsen-idUSTRE5BT17H20091230, 2019.

[oS22] National Museum of Scotland, https://www.
nms.ac.uk/explore-our-collections/stories/
scottish-history-and-archaeology/lewis-chess-pieces/,
feb 2022.

[RH] Rober Zubek Robin Hunicke, Marc LeBlanc, A formal approach to
game design and game research, https://users.cs.northwestern.
edu/~hunicke/pubs/MDA.pdf.

37

http://blog.joelburgess.com/2013/04/skyrims-modular-level-design-gdc-2013.html
http://blog.joelburgess.com/2013/04/skyrims-modular-level-design-gdc-2013.html
https://www.gdcvault.com/play/1018058/AI-Postmortems-Assassin-s-Creed
https://www.gdcvault.com/play/1018058/AI-Postmortems-Assassin-s-Creed
https://manifold.garden/presskit
https://subsetgames.com/itb.html
https://www.igdb.com/games/the-legend-of-zelda-breath-of-the-wild/presskit
https://www.igdb.com/games/the-legend-of-zelda-breath-of-the-wild/presskit
https://www.dfcint.com/product/video-game-consumer-segmentation-2/
https://www.dfcint.com/product/video-game-consumer-segmentation-2/
https://j4nw.com/pawnbarian/presskit.html
https://www.adamsmith.org/blog/the-match-of-the-century
https://www.adamsmith.org/blog/the-match-of-the-century
https://www.reuters.com/article/us-chess-norway-carlsen-idUSTRE5BT17H20091230
https://www.reuters.com/article/us-chess-norway-carlsen-idUSTRE5BT17H20091230
https://www.nms.ac.uk/explore-our-collections/stories/scottish-history-and-archaeology/lewis-chess-pieces/
https://www.nms.ac.uk/explore-our-collections/stories/scottish-history-and-archaeology/lewis-chess-pieces/
https://www.nms.ac.uk/explore-our-collections/stories/scottish-history-and-archaeology/lewis-chess-pieces/
https://users.cs.northwestern.edu/~hunicke/pubs/MDA.pdf
https://users.cs.northwestern.edu/~hunicke/pubs/MDA.pdf

A. Bibliography.....................................
[Sch15] Jesse Schell, The art of game design, CRC press, 2015.

[SR15] Peter Norvig Stuart Russell, Artificial intelligence a modern ap-
proach, Pearson Education, Inc., 2015.

[Stu21] Stoic Studio, https://bannersaga.com/media, nov 2021.

[Tuy21] Rob Tuytel, https://polyhaven.com/a/aerial_grass_rock, dec
2021.

38

https://bannersaga.com/media
https://polyhaven.com/a/aerial_grass_rock

	Introduction
	Analysis
	What makes a game fun?
	Fun from mastery
	Other sources of fun
	Fun in tactical games
	Game mechanics
	Grid
	Cover systems
	Feedback loops
	Randomness

	Analysis of existing tactical games
	Pawnbarian
	The Banner Saga
	Into the Breach
	Summary

	Design
	Paper prototype
	Unit actions
	Movement and distances
	Attacks and cover

	Game loops and incentives

	Technical analysis
	Existing software
	Game engines
	Modelling software and graphics editors
	Audio software

	Scripting
	Grid generation
	Pathfinding
	AI

	3D modelling techniques
	Sculpting
	Vertex editing
	Modular components
	Animations
	Textures
	Materials

	Implementation
	Game Systems and Scripts
	Tile System
	Turn management and turn order
	AI

	Modular Components
	3D modelling

	Testing
	Questionnaires
	Results

	Conclusion
	Bibliography

